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Boundedness of dynamical systems and chaos synchronization
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Chaos synchronization in bounded dynamical systems is studied. We use boundedness of trajectories within
the nonreplica approach to chaos synchronization and the Routh-Hurwitz criterion to propose a simple method
to make negative conditional Lyapunov exponents. The method is tested on the classical Lorenz model.
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In recent years, synchronization of chaotic systems has dXp,
become an area of active research, especially in light of its T K(X,Xar ,Ynr),
potential application in secure communications, modeling
oo : 2
brain activity, etc[1-9]. Usually two dynamical systems are dy
called synchronized if the distance between their states con- M = L (XX Yir)s

verges to zero fot—o. Recently[10,11], a generalization dt

of this concept was proposed, where two systems are called : . . .
synchronized if a functional relation exists between the state$ als_o_ possible, provided that functioksandl. satisfy the
of both systems. Different approaches to chaos synchroniza?—ond't'onS
tion have been proposed. In their seminal paper, Pecora and
Carroll[1] show that when a state variable from a chaotically

evolving system is transmitted as an ingdtiving variable

to a replica of part of the original system, the replica sub- L(xxy)=H(xy),

system(driven subsystem or receiyesometimes synchro- . . -
y ( y v y In fact, allowing the use of nonreplica systems adds flexibil-

nizes to the original systertdriving system or sendgrThe | e >
occurrence of this synchronization is conditioned on whethefty and enhances the p053|b|ll‘t‘y of syr?chronlzat[@j.” In
nonreplica approach” when

the subsystem’s Lyapunov exponents are negative. BecauddS paperl_we will use the term *nc ored: 1T .
of their dependence on the driving variable, it has been sug® nonreplica response system s considered; the case In
gested[2] that they be called conditional Lyapunov expo- hich the response system is a _rephca of part of the original
nents. In a related papEt2], it was pointed out that in many SyStem is referred to as the replica approach.

representative cases, chaos synchronization can be under-IThIS artlclehdeals V\Il'th. chaos synchronization in ﬂynamp
stood from the existence of a global Lyapunov function of¢@! Systems whose solutions are bounded. We use the bound-

edness of solutions of dynamical systems, the nonreplica ap-
Recently in[8] it was shown that the receiver subsystemProach to chaos synchronizatigl, and the Routh-Hurwitz

does not need to be a replica of part of the sender systenqriterion to make negative all the conditional Lyapunov ex-

According to[8], synchronization between the original dy- p'onents Without complex numerical and analytical ca_llcula—
namical system tions. Consider a general dynamical system that displays

chaotic behavior:

K(x,x,y)=G(x,y),
(3

the difference signals.

dx
dx —L (g X Xn)
R 1\ALIA2y = = = AN
gr - Gy, dt
() dx,
W:fZ(X]JXZ! e 1XN)1
dy
qr - HxY), : (4)
(where in generak andy are vectors with high dimension; dﬂ:f (X1,X Xn)
usually the dimensionality of the driving varialteis equal dt — N2 AND
to unity) and the nonreplica response system
wherexy,X,, ... Xy are state variabled,;,f,, ... ,fy are
sufficiently smooth functions ofq,X,, ... Xy. Without

*On leave from Institute of Physics, 370143 Baku, Azerbaijan.loss of generality, take the state variakleas a driver. Then
Electronic addresses: Shahverdiev@lan.ab.az, elman@ai.is.sagssing the approach developed 8] we construct the follow-
u.ac.jp ing nonreplica response systemith the subscriptr):
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dXnrp B a; as
dt _fl(xlvxnr21 s 1anN)+Cl(an1_Xl)_F1- Alzal, AZZ ,
a a
a, az a ®
1 3 5
dXnr2
at =f2(X1 . Xnr2s «+« Xnrn) T C2(Xnr1—X1) =F2, As=|ap a; ay,
(5) 0 a; a;
(with ay=a5=0; in addition,ag=1 in our case. Note that
the positiveness of tha;=a;, A,=a;a,—agz, Azg=azA,
dx implies that the Routh-Hurwitz criterion can be written as
nrN

Xnrn) + Cn(Xnr—X1) =F - a,>0a;>0a,8,—a3>0. We use the boundedness of the
solutions of the dynamical system and combine it with the
Routh-Hurwitz criterion to control the sign of real parts of

Here it is necessary to emphasize that, in order to construdf® rots of Eq(7) without conducting explicit calculations.
the nonreplica response system, we added to the right-harfgur @rgument is based on an analysis of the system consist-
side of the original nonlinear equations some damping termi!9 Of the variable differences between the original and re-
with coupling or damping strengtt) that vanish when chaos sponse Eiynamlcal systems, which we refer to as “error _dy-
synchronization is achieved. In fact, we use linear feedbacRaMics.” In fact the essence of our approach is simple: just
functions. The selected functions are of the simplest possiblghoose to oblige the.varlablle of the response system, which
form. Of course, one could select other types of functiondS the same as the dr|_ve variable, to synchromze, e, to relax
satisfying conditiong3); however, the simplest linear feed- towards the appropriate value by damping the dlffgrence
back functions will suffice for our purpose. very strongly. We give a concrete example to explain the

The eigenvalues of the Jacobian matrix of the nonreplicz{’r

dt :fN(XlYXnI‘Z!"'

ocess in detalil.
Consider the Lorenz systefit5—-18:

system(5),
dx_
d(F1,Fa, ... FN) E“T(y X,
= : (6)
(9(an1,an2, e 1anN) d
d—)tlzrx—y—xz, (10
satisfy the following equation:
dz
AN+a N T4 ta, N +ay=0, (7) gt ybz
. . . The parameters used for chaotic behavior by Lorenz and
wherea;,a,, ...,y are, in general, functions of the arbi- . . i Yy
most other investigators are=10 andb=3; r must be
trary constantse; andx (t),xy(t), . - . xy(t) are the solu- larger than a critical Rayleigh number of,. For o=10, b
tions of the original nonlinear systerf#). Our task is to g r '

make negative all the roots of E(7) without the need to :5\/'\/;”\;ﬁtg;"sigg:og'gnh:#]ktgl'svgggglr , We t:‘;zg%s the
perform complex numerical and analytical calculations. It y s .

appears that the reasonably large class of dynamical syste | |v§risnznvc\ilim ?rl:ecaesisari\fnr?g\;”ttﬁethderi\l;i(;reT/irsigztlgmv\?ﬁ(fﬂat

with bounded solutions is suitable for our purposes. AsWiII bge denotedx V(\q/e beain with the cagg —x and ut

shown by Lorenz if13], dissipative systems of the form o - i 9 . i P
X,=Y, Xz=z. Consider the following nonreplica response

system:
N N

dxi—Ea X X be+d (8) dx

e XXy — X4 d: 1

dt i = dntr =0 (Xpr2—X1) T C1(Xnr1—X1),
with the constants chosen so tha;; x;x;X, vanishes iden- dXnr2
tically and = b;;x;x; is positive definite, have bounded solu- gt~ X1 Xnr2 ™ XaXnr3 T Co(Xnr1 ~Xa), (13)
tions.

The problem of determining the roots of E) whenN dX,r3

>2 can become tedious at best. Fortunately, what is required T=X1an2—bxnr3+ C3(Xnr1—X1)-

is not these roots, but simply the regiongfin which all the

roots of Eq.(7) become negative. The answer to this problemas the calculations show, the eigenvalues of the Jacobian
is well known. A necessary and sufficient condition for all matrix of the systeni11) satisfy the following equation:

roots of the polynomial equatiof(z)=ayz"+a,z" 1+---

+a,_,z+a,=0 to have negative real parts is that all Hur- A2+ 22%(b+1—cq)+A[b—cy(b+1)+x2—c,b]

witz determinantsA,,A,, ... A, are positive[14]. In the 5

case of third-order equatiom& 3), these determinants are +0C3X;—X1C1— Cob—c;b=0. (12)
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100 ' ' ' ' ' J i X dxnrl
beha?rior of dynamical variables op— at =IXpr2— X1~ Xnr2Xnr3+ Cl(xnrl_ X]_),
80 F & ;o4 . i ‘l i e
N60 i anrZ
> dt = 0(X1 = Xnr2) T Co(Xnr1—X1), (16)
40
dx
20 3 nr3
i i dt :Xlxan_bxnr3+c3(xnrl_xl)-
0§ i | Bl
‘ RV \ E The eigenvalues of the Jacobian matrix satisfy the following
ol . i il § T equation:
40 ; ; :

A3+ N2(o+Db—cy)+ N[XsC3—Co(r —X3) +bo—cy(b+0)]

FIG. 1. Temporal evolution of dynamical variables in the Lo- (17)

renz model forr=10,b= £, r =60. (All ordinate values are dimen- An inspection of Eq(17) suggests that the Routh-Hurwitz
sionless. criterion is implementable i€, is negative. In the simplest
case, we put,=0, c;=0 and obtain thah;=—0c, \,=
Herexy(t), x,(t), andxs(t) are the solutions of the Lorenz —b, A 3=c;. Thus, for negative, all conditional Lyapunov
system(10) with x;=X, X,=Yy, X3=z. For simplicity, we exponents are negative and synchronization between driving
take c,=c3=0. Then from Eq.(12) it is easy to establish and response systems takes place. Analyzing the error dy-
that for negativec; conditional Lyapunov exponents become namics, one can also show that synchronization occurs for all
negative. Indeed, for negativg the Routh-Hurwitz criterion initial conditions. The equations for the error dynamics are
a;=b+1-c,>0, az=-cy(b+x)>0, aa,—az=(b
—c¢,)2—c;b(b—cy)+x2b+b—c,+x2>0 is satisfied. The de,
global asymptotic stability can be investigated using the dt

0 20 40 60 80 100 120t 140 160 180 200

- ClbO"‘f‘ X1X2C2+ C3X20'_ Czb(r - X3) = 0,

= I‘ez— 8263— X3€2_ Xze3+ Cle]_ y

Lyapunov function approachl2]. For error dynamicse;
=Xnr1— X1y €27 Xnr2 ™ X2, €37 X3 X3,

de;
W:Uez'f' Clel,
de;
. = _ez_xle3+ Czel, (13)
dt
deg
Hleez_be3+C3el,
one can use the Lyapunov function
E=(e?+e3+ed). (14)
Since
dE 2 2 2
g e;—best+oee,tcie7+cree,+Cre€3 (15

can be made strictly negative fog=0, c,= — o, and nega-

&=— e,+Ccoe (18
dt €T (e,

des

szlez_beg‘i‘Cgel.

Herex,(t), X5(t), andxs(t) are the solutions of the Lorenz
system(10) with x;=y, X,=X, x3=z. Now we use the fact
that solutions to the Lorenz system are bounded. The bound-
ing value depends on the relationships between the system’s
parameters, and its expression can be found in different text-
books and papers; see, e.pl5-17,19. For example, ac-
cording to[19], the solutions to the Lorenz model always
satisfy  inequality  x2(t)+y2(t)+[z(t)—r—o]?’<(o
+r)2K?, where K?=3%+(b/4)max@ 11). Estimations
show that for the above-mentioned values of parameters, the
maximal value of the dynamical variables is theoretically of
the order of 2(+ o7); so forr =60, =10 we can put safely
x(t) <140, y(t) <140, z(t) <140. (See Fig. 1. Sincex; ;3

are bounded and one can choose the magnitude and sign of
the arbitrary constants in E(L8), it can easily be seen that
for “sufficiently negative” c,, the differences,, e,, and

ez approach zero. At extremely large negativg we can
slavex,,; to x; . This is like replacing all occurrences xf,;

in the response witlx;. Thus, forc,— —o we asymptoti-
cally approach the replica method of synchronization; we
obtain that in the limiting case af;— —« the equations for
e,,e; describe error dynamics within the replica approach in

tive c;, we conclude that the asymptotic stability is global. the case ofx; driving. And as noted if4], the replica re-
Now consider they variable in the original Lorenz model sponse systemxg,X3) is globally asymptotically stable.
as a driver. To maintain consistent notation throughout thisgJsually, global asymptotic stability is studied using the

paper, we reorder variables and equationssy, X,=X,
X3z=2, which yields for the nonreplica system

Lyapunov function approackl2]. However, in some cases
the analysis of error dynamics is the simplest and most
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FIG. 2. Conditional Lyapunov exponents as a functioncef
(c,=c3=0). (All ordinate values are dimensionlekss.
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FIG. 3. Temporal evolution of dynamical variables described by
Egs. (21) and (22) for c;=—10, c,=c3=0 with x,,1(0)—x;(0)
=Xpr2(0)—X5(0)=xp;3(0)—x3(0)=0.1. (All ordinate values are
dimensionless.

ELMAN MOHAMMED-OGLU SHAHVERDIEV

PRE 60

250
_ 200 f
2 150 §i
~ 100
"
50
0

50

X24 Xnr2

10 20 30 40 50 60 70 80 90 100
t

FIG. 4. Same as in Fig. 3, but witk,1(0)—X;(0)=X,2(0)
—X5(0)=Xp,3(0)—x5(0)=1. (All ordinate values are dimension-
less)

straightforward way of establishing global asymptotic stabil-
ity. Indeed, withx;=y driving within the replica approach,
the error dynamics is described by equations

de,

at 7€
des (19
E:X]_ez beg.

Using the Lyapunov function of the fore=3(e5+ €3), we
obtain thatdE/dt=— oe3—be3+x,e,e3, from which it is
very difficult to judge (at least analytically how to make
dE/dt strictly negative in the general case. But from error
dynamics itself19) it is immediately obvious that, ande;
approach zero.

Applying this approach, we establish that for sufficiently
negativec,,e; approaches zero. Insertirg=0 in the last
equation in(18), one can see tha, ande; also approach
zero.

Finally, consider the case afdriving in the original Lo-
renz system. Reordering variables and equatiorsz, X,
=y, X3=X in the original model10), we get the following
nonreplica system:

anrl _
dt *anzxan_le+Cl(anl_X1):
dXnr2
dt anr3_an2_an3X1+CZ(anl_xl)y (20)
dxnr3 _
dt =0 (Xnr2— Xnra) T C3(Xnr1 — X1).
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Conditional Lyapunov exponents are to be found from thevergence between the driving and response systems. For ar-
equation bitrary initial conditions, we established that trajectories of
driving and response systems do not diverge in tifigs. 3

and 4. From these figures one can see that the temporal
evolution of the response system repeats that of the driving
system exactlybut with different amplitudes We conclude
that in this case, the type of generalized synchronization re-
ported in[20,21] for the limiting case ofc;— —« also oc-
with x,(t), x,(t), andxs(t) being the solutions of the origi- curs for moderately negative valuesaf. With increasingly

nal Lorenz mode{10): x;=2z, X,=Y, Xs=X. In this case, we Negativec;, e;=0 is obtained with an increasingly higher
failed to make negative conditional Lyapunov exponentsiegree of accuracy, thus making decoupling of the sub-
analytically by choosing arbitrary constamtsas easily as in  SYStem €2,€s) from Eq. (22) more conspicuous. In other

N3+ N%(0+1—c1) —A[XoC3+X3Co+ (o+1)Cy
+O'(r_Xl)_U]_X2(0C2+C3)_UC1_X3C2(T

—(r—xp)(xzcz—cq,0)=0, (21)

previous cases; so we used numerical simulati&ig. 2).
We obtain the following error dynamics:

de;
H = 62€3+ X3ez+ X263+ Clel ’
dez

Wzre3—e2—x1e3+ Co€1, (22

Since we also failed to demonstrate analytically the globa
asymptotic stability using the Lyapunov function approach,.:
here we present the results of numerical simulations and a
direct analysis of the error dynamics itself. From the first
equation of(22) one can establish that for sufficiently nega-
tive ¢, the differencee; approaches zero, since the solutions
of the Lorenz system are bounded and the choice of co

stantsc; is arbitrary. At extremely large negative, the

words, we thus conjecture that the systémonreplica re-
sponse systejnretains the memory of its pafteplica re-
sponse systemAnd this conjecture is valid not only for the
case ofz driving, but also for the cases afandy driving,
since we have shown that in the latter case both replica and
nonreplica response systems are globally asymptotically
stable.

We also successfully applied the present approach in
cases where the nonreplica response system has a constant
Jacobian, such as in the &der systeni22,23 (driving by
x) and the four-dimensional Duffing oscillatp24] (driving
by x). These systems contain only one nonlinear term, which
is a function of a single variable. Considering this variable as
driver, we obtain a response system with a constant Jaco-
bian.

In conclusion, we use the nonreplica approach to chaos
synchronization and boundedness of trajectories of the dy-
namical system, and combine it with the Routh-Hurwitz cri-
terion to control the sign of real parts of conditional

"'yapunov exponents.

errore, cancels, and we arrive at the generalized synchroni- The author would like to thank The Abdus Salam ICTP

zation casg20]; see alsd21]. As reported i 20], the sub-

system &,,X3) is uniformly stable.
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