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Boundedness of dynamical systems and chaos synchronization
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Chaos synchronization in bounded dynamical systems is studied. We use boundedness of trajectories within
the nonreplica approach to chaos synchronization and the Routh-Hurwitz criterion to propose a simple method
to make negative conditional Lyapunov exponents. The method is tested on the classical Lorenz model.
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In recent years, synchronization of chaotic systems
become an area of active research, especially in light o
potential application in secure communications, model
brain activity, etc.@1–9#. Usually two dynamical systems ar
called synchronized if the distance between their states
verges to zero fort→`. Recently@10,11#, a generalization
of this concept was proposed, where two systems are ca
synchronized if a functional relation exists between the sta
of both systems. Different approaches to chaos synchron
tion have been proposed. In their seminal paper, Pecora
Carroll @1# show that when a state variable from a chaotica
evolving system is transmitted as an input~driving variable!
to a replica of part of the original system, the replica su
system~driven subsystem or receiver! sometimes synchro
nizes to the original system~driving system or sender!. The
occurrence of this synchronization is conditioned on whet
the subsystem’s Lyapunov exponents are negative. Bec
of their dependence on the driving variable, it has been s
gested@2# that they be called conditional Lyapunov exp
nents. In a related paper@12#, it was pointed out that in many
representative cases, chaos synchronization can be u
stood from the existence of a global Lyapunov function
the difference signals.

Recently in@8# it was shown that the receiver subsyste
does not need to be a replica of part of the sender sys
According to @8#, synchronization between the original d
namical system

dx

dt
5G~x,y!,

~1!

dy

dt
5H~x,y!,

~where in generalx andy are vectors with high dimension
usually the dimensionality of the driving variablex is equal
to unity! and the nonreplica response system
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dxnr

dt
5K ~x,xnr ,ynr!,

~2!
dynr

dt
5L ~x,xnr ,ynr!,

is also possible, provided that functionsK andL satisfy the
conditions

K ~x,x,y!5G~x,y!,
~3!

L ~x,x,y!5H~x,y!,

In fact, allowing the use of nonreplica systems adds flexib
ity and enhances the possibility of synchronization@8#. In
this paper we will use the term ‘‘nonreplica approach’’ wh
a nonreplica response system is considered; the cas
which the response system is a replica of part of the orig
system is referred to as the replica approach.

This article deals with chaos synchronization in dynam
cal systems whose solutions are bounded. We use the bo
edness of solutions of dynamical systems, the nonreplica
proach to chaos synchronization@8#, and the Routh-Hurwitz
criterion to make negative all the conditional Lyapunov e
ponents without complex numerical and analytical calcu
tions. Consider a general dynamical system that displ
chaotic behavior:

dx1

dt
5 f 1~x1 ,x2 , . . . ,xN!,

dx2

dt
5 f 2~x1 ,x2 , . . . ,xN!,

~4!
]

dxN

dt
5 f N~x1 ,x2 , . . . ,xN!,

wherex1 ,x2 , . . . ,xN are state variables,f 1 , f 2 , . . . ,f N are
sufficiently smooth functions ofx1 ,x2 , . . . ,xN . Without
loss of generality, take the state variablex1 as a driver. Then
using the approach developed in@8# we construct the follow-
ing nonreplica response system~with the subscriptnr!:

.
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dxnr1

dt
5 f 1~x1 ,xnr2 , . . . ,xnrN!1c1~xnr12x1!5F1 ,

dxnr2

dt
5 f 2~x1 ,xnr2 , . . . ,xnrN!1c2~xnr12x1!5F2 ,

~5!

]

dxnrN

dt
5 f N~x1 ,xnr2 , . . . ,xnrN!1cN~xnr12x1!5FN .

Here it is necessary to emphasize that, in order to const
the nonreplica response system, we added to the right-h
side of the original nonlinear equations some damping te
with coupling or damping strengthci that vanish when chao
synchronization is achieved. In fact, we use linear feedb
functions. The selected functions are of the simplest poss
form. Of course, one could select other types of functio
satisfying conditions~3!; however, the simplest linear feed
back functions will suffice for our purpose.

The eigenvalues of the Jacobian matrix of the nonrep
system~5!,

J5
]~F1 ,F2 , . . . ,FN!

]~xnr1 ,xnr2 , . . . ,xnrN!
, ~6!

satisfy the following equation:

lN1a1lN211¯1an21l1aN50, ~7!

wherea1 ,a2 , . . . ,aN are, in general, functions of the arb
trary constantsc1 and x1(t),x2(t), . . . ,xN(t) are the solu-
tions of the original nonlinear system~4!. Our task is to
make negative all the roots of Eq.~7! without the need to
perform complex numerical and analytical calculations.
appears that the reasonably large class of dynamical sys
with bounded solutions is suitable for our purposes.
shown by Lorenz in@13#, dissipative systems of the form

dxi

dt
5 (

j ,k51

N

ai jkxjxk2(
j 51

N

bi j xj1di , ~8!

with the constants chosen so thatSai jkxixjxk vanishes iden-
tically andSbi j xixj is positive definite, have bounded sol
tions.

The problem of determining the roots of Eq.~7! whenN
.2 can become tedious at best. Fortunately, what is requ
is not these roots, but simply the region ofci in which all the
roots of Eq.~7! become negative. The answer to this proble
is well known. A necessary and sufficient condition for
roots of the polynomial equationf (z)5a0zn1a1zn211¯

1an21z1an50 to have negative real parts is that all Hu
witz determinantsD1 ,D2 , . . . ,Dn are positive@14#. In the
case of third-order equation (n53), these determinants are
ct
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D15a1 , D25Ua1 a3

a0 a2
U,

~9!

D35Ua1 a3 a5

a0 a2 a4

0 a1 a3

U ,

~with a45a550; in addition,a051 in our case.!. Note that
the positiveness of theD15a1 , D25a1a22a3 , D35a3D2
implies that the Routh-Hurwitz criterion can be written
a1.0,a3.0,a1a22a3.0. We use the boundedness of th
solutions of the dynamical system and combine it with t
Routh-Hurwitz criterion to control the sign of real parts
the roots of Eq.~7! without conducting explicit calculations
Our argument is based on an analysis of the system con
ing of the variable differences between the original and
sponse dynamical systems, which we refer to as ‘‘error
namics.’’ In fact the essence of our approach is simple: j
choose to oblige the variable of the response system, w
is the same as the drive variable, to synchronize, i.e., to re
towards the appropriate value by damping the differen
very strongly. We give a concrete example to explain
process in detail.

Consider the Lorenz system@15–18#:

dx

dt
5s~y2x!,

dy

dt
5rx2y2xz, ~10!

dz

dt
5xy2bz.

The parameters used for chaotic behavior by Lorenz
most other investigators ares510 and b5 8

3 ; r must be
larger than a critical Rayleigh number ofr cr . For s510, b
5 8

3 , r cr524.74. Throughout this paper, we taker 560.
We will consider dynamical variablesx, y, and z as the

drivers and in all cases we rewrite the Lorenz system so
it begins with the equation for the driving variable, whic
will be denotedx1 . We begin with the casex1[x and put
x2[y, x3[z. Consider the following nonreplica respons
system:

dxnr1

dt
5s~xnr22x1!1c1~xnr12x1!,

dxnr2

dt
5rx12xnr22x1xnr31c2~xnr12x1!, ~11!

dxnr3

dt
5x1xnr22bxnr31c3~xnr12x1!.

As the calculations show, the eigenvalues of the Jacob
matrix of the system~11! satisfy the following equation:

l21l2~b112c1!1l@b2c1~b11!1x1
22c2b#

1sc3x12x1
2c12c2sb2c1b50. ~12!
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Herex1(t), x2(t), andx3(t) are the solutions of the Loren
system~10! with x1[x, x2[y, x3[z. For simplicity, we
take c25c350. Then from Eq.~12! it is easy to establish
that for negativec1 conditional Lyapunov exponents becom
negative. Indeed, for negativec1 the Routh-Hurwitz criterion
a15b112c1.0, a352c1(b1x1

2).0, a1a22a35(b
2c1)22c1b(b2c1)1x1

2b1b2c11x1
2.0 is satisfied. The

global asymptotic stability can be investigated using
Lyapunov function approach@12#. For error dynamicse1
5xnr12x1 , e25xnr22x2 , e35xnr32x3 ,

de1

dt
5se21c1e1 ,

de1

dt
52e22x1e31c2e1 , ~13!

de3

dt
5x1e22be31c3e1 ,

one can use the Lyapunov function

E5 1
2 ~e1

21e2
21e3

2!. ~14!

Since

dE

dt
52e2

22be3
21se1e21c1e1

21c2e1e21c3e1e3 ~15!

can be made strictly negative forc350, c252s, and nega-
tive c1 , we conclude that the asymptotic stability is globa

Now consider they variable in the original Lorenz mode
as a driver. To maintain consistent notation throughout
paper, we reorder variables and equations:x1[y, x2[x,
x3[z, which yields for the nonreplica system

FIG. 1. Temporal evolution of dynamical variables in the L
renz model fors510,b5

8
3 , r 560. ~All ordinate values are dimen

sionless.!
e

is

dxnr1

dt
5rxnr22x12xnr2xnr31c1~xnr12x1!,

dxnr2

dt
5s~x12xnr2!1c2~xnr12x1!, ~16!

dxnr3

dt
5x1xnr22bxnr31c3~xnr12x1!.

The eigenvalues of the Jacobian matrix satisfy the follow
equation:

l31l2~s1b2c1!1l@x2c32c2~r 2x3!1bs2c1~b1s!#

2c1bs1x1x2c21c3x2s2c2b~r 2x3!50, ~17!

An inspection of Eq.~17! suggests that the Routh-Hurwit
criterion is implementable ifc1 is negative. In the simples
case, we putc250, c350 and obtain thatl152s, l25
2b, l35c1 . Thus, for negativec1 all conditional Lyapunov
exponents are negative and synchronization between dri
and response systems takes place. Analyzing the error
namics, one can also show that synchronization occurs fo
initial conditions. The equations for the error dynamics a

de1

dt
5re22e2e32x3e22x2e31c1e1 ,

de2

dt
52se21c2e1 , ~18!

de3

dt
5x1e22be31c3e1 .

Herex1(t), x2(t), andx3(t) are the solutions of the Loren
system~10! with x1[y, x2[x, x3[z. Now we use the fact
that solutions to the Lorenz system are bounded. The bou
ing value depends on the relationships between the syste
parameters, and its expression can be found in different t
books and papers; see, e.g.,@15–17,19#. For example, ac-
cording to @19#, the solutions to the Lorenz model alway
satisfy inequality x2(t)1y2(t)1@z(t)2r 2s#2<(s
1r )2K2, where K25 1

4 1(b/4)max(s21,1). Estimations
show that for the above-mentioned values of parameters
maximal value of the dynamical variables is theoretically
the order of 2(r 1s); so for r 560, s510 we can put safely
x(t),140, y(t),140, z(t),140. ~See Fig. 1.! Sincex1,2,3
are bounded and one can choose the magnitude and sig
the arbitrary constants in Eq.~18!, it can easily be seen tha
for ‘‘sufficiently negative’’ c1 , the differencese1 , e2 , and
e3 approach zero. At extremely large negativec1 we can
slavexnr1 to x1 . This is like replacing all occurrences ofxnr1
in the response withx1 . Thus, forc1→2` we asymptoti-
cally approach the replica method of synchronization;
obtain that in the limiting case ofc1→2` the equations for
e2 ,e3 describe error dynamics within the replica approach
the case ofx1 driving. And as noted in@4#, the replica re-
sponse system (x2 ,x3) is globally asymptotically stable
Usually, global asymptotic stability is studied using th
Lyapunov function approach@12#. However, in some case
the analysis of error dynamics is the simplest and m
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FIG. 2. Conditional Lyapunov exponents as a function ofc1

(c25c350). ~All ordinate values are dimensionless.!

FIG. 3. Temporal evolution of dynamical variables described
Eqs. ~21! and ~22! for c15210, c25c350 with xnr1(0)2x1(0)
5xnr2(0)2x2(0)5xnr3(0)2x3(0)50.1. ~All ordinate values are
dimensionless.!
straightforward way of establishing global asymptotic stab
ity. Indeed, withx1[y driving within the replica approach
the error dynamics is described by equations

de2

dt
52se2 ,

~19!de3

dt
5x1e22be3 .

Using the Lyapunov function of the formE5 1
2 (e2

21e3
2), we

obtain thatdE/dt52se2
22be3

21x1e2e3 , from which it is
very difficult to judge ~at least analytically! how to make
dE/dt strictly negative in the general case. But from err
dynamics itself~19! it is immediately obvious thate2 ande3
approach zero.

Applying this approach, we establish that for sufficien
negativec1 ,e1 approaches zero. Insertinge150 in the last
equation in~18!, one can see thate2 and e3 also approach
zero.

Finally, consider the case ofz driving in the original Lo-
renz system. Reordering variables and equationsx1[z, x2
[y, x3[x in the original model~10!, we get the following
nonreplica system:

dxnr1

dt
5xnr2xnr32bx11c1~xnr12x1!,

dxnr2

dt
5rxnr32xnr22xnr3x11c2~xnr12x1!, ~20!

dxnr3

dt
5s~xnr22xnr3!1c3~xnr12x1!.

y

FIG. 4. Same as in Fig. 3, but withxnr1(0)2x1(0)5xnr2(0)
2x2(0)5xnr3(0)2x3(0)51. ~All ordinate values are dimension
less.!
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Conditional Lyapunov exponents are to be found from
equation

l31l2~s112c1!2l@x2c31x3c21~s11!c1

1s~r 2x1!2s#2x2~sc21c3!2sc12x3c2s

2~r 2x1!~x3c32c1s!50, ~21!

with x1(t), x2(t), andx3(t) being the solutions of the origi
nal Lorenz model~10!: x1[z, x2[y, x3[x. In this case, we
failed to make negative conditional Lyapunov expone
analytically by choosing arbitrary constantsci as easily as in
previous cases; so we used numerical simulations~Fig. 2!.

We obtain the following error dynamics:

de1

dt
5e2e31x3e21x2e31c1e1 ,

de2

dt
5re32e22x1e31c2e1 , ~22!

de3

dt
5s~e22e3!1c3e1 .

Since we also failed to demonstrate analytically the glo
asymptotic stability using the Lyapunov function approa
here we present the results of numerical simulations an
direct analysis of the error dynamics itself. From the fi
equation of~22! one can establish that for sufficiently neg
tive c1 the differencee1 approaches zero, since the solutio
of the Lorenz system are bounded and the choice of c
stantsci is arbitrary. At extremely large negativec1 , the
errore1 cancels, and we arrive at the generalized synchro
zation case@20#; see also@21#. As reported in@20#, the sub-
system (x2 ,x3) is uniformly stable.

Our numerical results show that only for equal or ve
close initial conditions~when differences between initia
conditions do not exceed 0.001! can we obtain perfect con
e

s

l
,
a

t

n-

i-

vergence between the driving and response systems. Fo
bitrary initial conditions, we established that trajectories
driving and response systems do not diverge in time~Figs. 3
and 4!. From these figures one can see that the temp
evolution of the response system repeats that of the driv
system exactly~but with different amplitudes!. We conclude
that in this case, the type of generalized synchronization
ported in@20,21# for the limiting case ofc1→2` also oc-
curs for moderately negative values ofc1 . With increasingly
negativec1 , e150 is obtained with an increasingly highe
degree of accuracy, thus making decoupling of the s
system (e2 ,e3) from Eq. ~22! more conspicuous. In othe
words, we thus conjecture that the system~nonreplica re-
sponse system! retains the memory of its part~replica re-
sponse system!. And this conjecture is valid not only for the
case ofz driving, but also for the cases ofx and y driving,
since we have shown that in the latter case both replica
nonreplica response systems are globally asymptotic
stable.

We also successfully applied the present approach
cases where the nonreplica response system has a con
Jacobian, such as in the Ro¨ssler system@22,23# ~driving by
x! and the four-dimensional Duffing oscillator@24# ~driving
by x!. These systems contain only one nonlinear term, wh
is a function of a single variable. Considering this variable
a driver, we obtain a response system with a constant J
bian.

In conclusion, we use the nonreplica approach to ch
synchronization and boundedness of trajectories of the
namical system, and combine it with the Routh-Hurwitz c
terion to control the sign of real parts of condition
Lyapunov exponents.
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